SOME FAMILIES OF EXACT SOLUTIONS OF THE EQUATIONS
OF TWO-DIMENSIONAL SHALLOW WATER THEORY

M. T. Gladyshev

Results are presented of a study of the exact solutions of the equations of two-dimensional
unsteady and steady shallow water theory, based on the group properties of these equations.
The first part presents the group properties of the equations in question; the second part
presents the invariant solutions of these equations.

We consider the equations of two-dimensional unsteady open liquid flows (shallow water theory or
long wave theory)
Diz+zdiv u=0, Du+yz=0 (0.1)

Hereu=1 uy, uz} is the velocity vector in the horizontal plane =1, x%; z =gh, g is the gravity force
acceleration, h is the stream depth; and t is time. The vector operator V is the gradient operator with
respect to the variable x=1{x!, xz}, div is the divergence symbol with respect to the variable x, and the
operator Dy is given by the formula
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The first eguation (0.1) is the continuity equation and the second is the equation of motion., Equations
(0.1) were first obtained by Friedrichs and Keller [1] in 1948 as the first approximation from the exact equa-
tions of hydrodynamics.

In many problems associated with river regulation, flood prediction, and so on, the nonlinear differ-
ential equations (0.1) with suitable additions, which make it possible to take into account the variation of
the river valley bottom elevation and the flow resistance caused by irregularity of the river bottom, are
used to study flows in rivers. In this case we have in place of the second equation (0.1)

D+ Vz= —Vz, — Fulu | (0.2)

2

Here 7,=17,(x!, x?) is the bottom elevation; and F =F(x!, x%, z) is the friction coefficient.

1. GROUP PROPERTIES

The objective in studying the group properties of differential equations lies in finding the broadest
local Lie transformation group admitted by the given system of equations and in finding the classification
of the invariant and partially invariant solutions of this system, introduced by Ovsyannikov [2].

There is a well-known technique for finding the infinitesimal operators of the given system, which
leads to the solution of the defining equations for the coordinates of these operators [2]. We shall sum-
marize the results, calculated using this technique, concerning the group properties of the system (0.1),
(0.2), and the equations emanating from this system.
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For the equations (0.1), (0.2) the narrowest group, consisting of the single operator X=20(-)/8t, oc-
curs for arbitrary functions z, and F. Expansion of the group is permitted for special forms of z, and F
which are not interesting from the physical viewpoint, This question was studied in [3] for the one-dimen-
sional equations (0.1), (0.2). The broadest group occurs for z,=const and F =0, i.e., for (0.1). The Lie
algebra of the principal group admitted by (0.1) is generated by the linearly independent operators

9 9 o L9 9 1.1)
Xy = I Xy= ozl ? Xy = ox2 Xi=1 9zl + ouy
8 2 a8 , @
X~5 =1 ox? + Jus Xo= tﬁ tz i 0zt +a 3a?
a [i] a a a a a a
O 2 1 . —_ e — J— _— —
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2 [7} d 2 d a
Xy =1 5 + 10t gy + taP g+ (21 — ) 5+ (@ — lg) 5 — 225

The system of three equations (0.1) will be a particular case of the system of four equations of two-
dimensional unsteady gasdynamics [2], Specifically, for A=2p and p =1/2p2, the latter become the equa-
tions (0.1) (with replacement of p by z). In the case of the gasdynamic equations for A =2p there appears
the additional operator

a a
szp‘;ﬁ;—i—PE;

the sign changes in the last term of the expression for X; and the term 4tpd(-)/9p appears in the expres-
sion for X,.

The solutions of (0.1} will be partly invariant solutions of the equations of gasdynamics when the en-
tropy S=const. It is well known that broadening of the group is possible in this case. T can be shown that
the group admitted by the equations of isentropic motion follows from the group admitted by the equations
of nonisentropic motion,

With account for the noted differences, the classification made in [4] of the invariant solutions of the
equations of gasdynamics is valid for (0.1).

In addition to the invariant solutions, there are other classes of solutions which have received very
little study to date. These include the partly invariant solutions of the simple wave and double wave types
{5-7]. In studying double waves, the key equation [6] will be

(z — Zugz) By, + zzu,zuzzuxuz + (2 — 22 20, + 22 — 2,2 — 2,2 = (1.2)
which is obtained from (0.1) under the assumptions

dus Juy
Azt - 02

2 = 2 (uy, Uy), =90

Calculations of the group admitted by (1.2) yield the following operators:

b 9 . % ) 0 0 9
X1—-6ul, Xy = ay )&3*“2——"0“_”10“2' X4_u15—51—+u2m+2z52— (1.3)

We note that the solution of the problem of the group properties of the following quasilinear syvstem
which is equivalent to (1.2) leads to the same result:

Zu,—T=0, 2,—06=0, 6y, —T,=0
(2 —6®) Ty, + 2767, + (2 — T3 0y, + 22 — 12 — 62 =0

which is obtained by introducing the auxiliary variables t and o.

Using the internal automorphisms of the transformation group (1.3), we construct the optimal system
of single~parameter subgroups

X, X, 4 aX,, X, (1.4)

The invariant solutions of rank 2 relative to the dilational operator X, from (1.1) are called conical
flows and have the form [8]

W=z 4 uz, ¥, =y+ vz, v), z=hHzy) c=1"%, y=1%) (1.5)
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Substituting (1.5) into (0.1), we obtain the system
uhy - vhy 4+ h(u, -+ vy) = —2h
Ully + Viby + By = — U, UV, + vy + Ay = —v (1.6)
Calculations of the group admitted by the system (1.6) lead to the following results:

2 8 . F) 3 a
Ki=gp Kamgy Nmyg—tgtvg —uy

.8 2 d 2 3 1.7)
X4_x_a‘£+y.5y‘+"’%'+vﬁ+2hﬁ (
The optimal system of single-parameter subgroups of the group (1.7) coincides with (1.4).
In the steady motion case [9], (0.1) take the form
UyZas + UsBxr + 3 (Uper + Usw) = 0
Ul + Uglhar - Zxt = 0, Uyl + Uglloyz + 22 = 0. (1.8)
which admit the group
a 2 a a a a
M= Xa=gr, KN=dgm —dlgy Ty gy
3 a a a ]
X3=.’l?1~6;-1- -{—.%2—6—1:?, Xs——‘ulm—[—uza—u?—Q—ZZE (1-9)
The optimal system of single-parameter subgroups of the group (1.9) is given by the operators
X, + BX;, X+ aXy + X, Xi - BX; (1.10)
In conclusion we note that the one-dimensional equations for shallow water with cylindrical waves
8z 0z du zu du du 9z
a e Tig =0 Frugrg=0 (1.11)
admit the following group of transformations:
a i} 7} a [} a
Xl:_fﬁ_’ XZZt—(—,ﬁ——}—I‘—a—r—, stt—é?—u—gg——?,z&—

[Z} L2} 7] [ 1.12
X4=t27+trw+(r—tu)m—-2tz7z— ( )

2. APPLICATIONS

In this section we examine the exact solutions of the shallow water equations and the equations which
follow from them when using the group property results described in the first section.

A. Examples of Invariant Solutions of (0.1), (0.2). Knowledge of the basic group and optimal systems
of one- and two-parameter subgroups permits finding the invariant solutions of rank 2 and 1, respectively.
The optimal system of one-parameter subgroups of the group (1.1) contains 13 operators {4]; correspond-
ingly, we have 13 invariant solutions of rank 2. The initial quantities will be functions of two arguments
whose values are different for the different subgroups. The optimal system of two-parameter subgroups
of the group (1.1) yields 30 invariant solutions of rank 1 when the initial quantities depend on a single argu-
ment, In both cases the solution of the systems of equations can be sought using numerical methods.

We shall note several examples of invariant solutions for the system (0.1), (0.2), which are written
in explicit form. These solutions are of independent interest and may also be used to verify the numerical
methods. '

We start with the invariant solutions of rank 1.
a) We examine the invariant solution corresponding to the subgroup H = (Xy, X;—X,;+X;). It has the
form
Ur=rlU, ug=rV, z=rH, h=ré (2.1)

1

Here r, # are the polar coordinates in the plane x°, xz, and uy, ug are the projections of the velocity

on the polar coordinate axes,
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We shall examine the motion of the water above a bottom whose equation is z,=-Y,r’. without ac-
count for friction (F =0).

Substituting (2.1) into (0.1), (0.2), written in polar coordinates, we find one of the solutions
U=1,V =0, H == AN?,
where A is any positive number.

This yields the solution of the following boundary value problem. At the initial moment t=0, there
is given up=r, ug =0, 2=A(0=r=gq), and the boundary condition for r=q(t > 0) has the form uyp=a. The
solution has the form

u, =1, up=20, z=4 exp(—2t) O<<r<{a, t>0
The bottom is not uncovered, although the depth decreases to zero with time,

b) For the subgroup H = (X;— Xz, X;+X4}, we have the invariant solution

g+ rV r’H =0

Uy == 152 - u9:1+tzv 2= a¥xor

(2.2)

Substituting (2.2} into (0.1), we find one of the solutions
U=0, V=4, H=1,(A*—1) (4= const, 42> 1)

We pose the following problem: find the solution if at the initial moment t=0, u, =0, ug =Ar, z= 1/2
A2—1)r? (0 =r =a), and for

r=ua(t >0 u, =at{l + £
The solution has the form

rt Ar (A2—1)

b=TrEe WTTae 2= gagap O0Sr<e 120
¢) For the pair (X;, X;) we have
Uy =U, wa=V, z=H, r=rtt! (2.3)

Substituting (2.3) into (0.1), we find the particular solution
U=k V=AN  H==1; (447 + 1)?
Let the conditions be given at the initial moment t=1 (0= r=gq)
up = Yor, we=Ar, z=1Y, (44> 1) r?
and at the boundary r=a (& >1) urzi/zat‘i. The solution of this problem is given by the expressions

r A 4A2 41
b=, w=-", z=2LFL I 0<r<a, 1> 1)

This solution is qualitatively reminiscent of the preceding solution.

d) On the subgroup H= (X;, X;+X,) we have the invariant solution

ot u v _H . r
GETEEt . WS AT e AT s (2.4

We consider the case in which the bottom is given by the equation
2=y Ar? (4 < 0)
We ignore friction (F =0). Substituting (2.4) into (0.1) and (0.2), we find the particular solution
U—0, V=0, H=— —1Y, AM? 1,2 1 22
Let at the initial moment

t=0 (e<<r V2l + (4 —Yy A0 b, 0<a<<V2b)
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given the state
u, =0, ug=0, z=202— Y24 + 19,

and at the boundary r=g {t > 0)

 at o 1
=TreE: *511e 2@

4+ 1)

Ur

The solution of this problem is given by the expressions
u,:i—_r’_tﬁ—, ug =0, z:%—; _51}?<_A+'_(1”:—z2)5‘>
e<r<V2ZU+ (1= %A/ 09" (4 4 9%b, >0
The liquid boundary (z =0) travels following the law
r=Va1 -+ (4 —Ypd [ bYYs]h b1 + )"
As t— the level approaches a horizontal position.
A particular case of this solution, namely, when A =0 (horizontal bottom), was studied in [4].

In the preceding solutions friction was ignored: we shall now present an example which accounts
for friction.

e) On the subgroup H= (X, X;+X;) we obtain the invariant solution
up =110, uy=r-'V, z=r"tH, A = r-% (2.5)
We consider the case in which

A

A
50:“‘—2”,.2—(‘4>O), F=—2—r37

Substituting (2.5) into (0.1), (0.2), we find one of the solutions
U= ¥, V=0, H=1,4
We pose the problem: find the solution if at the initial moment t=1 (g =r =b) there is given
U, ="Y, r, us=0, z=1Yy"24,
and at the boundaries we have

u, =Y, at~t, z="14, Aa~? for r==aqaft >1).
=1, bt™* for r="5 (t > 1)

The solution of this problem is given by the expressions
Uy ="t i, ug =0, z=Yo Ar? (a<r<<bh t>1)

It is interesting to note that the elevation is constant, since z+z,=0, i.e., at any time the free surface
is horizontal and constant,

Let us turn to the invariant solutions of rank 2. The operator X;+X, corresponds to an invariant
solution of the form '

uy=t+U, u="V, z=H, A=Upt?—2!, p=2a? (2.6)
We consider the case in which the bottom is an inclined plane
2y = —iz! — jz? (i< 1, == 0)
We neglect friction.

Substituting (2.6) into (0.1), (0.2), we obtain a system in partial derivatives with two independent
variables, whose coefficients are independent of A and u. Therefore this system admits a solution of the
simple wave type, i.e.,

U=U@), V="VEe), H=H® (6=0,+ ah-+ g
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One of the simple wave solutiqns has the form

U=0, V=0, H={ —1iae8 (a=const, a=0)

This yields the solution of the following problem: at the initial moment t =0 the liquid is at rest and
its free surface level coincides with the plane

2= (1 — a0, — (1 — D)2t + ja2

Thereafter (for t > 0) the liquid motion is described by the expressions

Uy =t, u,=~0,

z= (1 — )a~0, + (I — H(V/o® — 21) + Ja?
The liquid boundary (z =0) travels with the velocity

[1—i ][l =+ 1%t
and the free surface displaces parallel to itself,

Let us examine the operator X+ X, It corresponds to an invariant solution of the form
txl

ul‘:T—Ft_?"%_—xT’ u.2=—1t_f_—2tz~+xlz, Z:1-4H—z?’ A= lei{——tz. u:7f—a__‘&__—t—2 (2.7)
Substituting (2.7) into (0.1), we obtain a system whose particular solution has the form
U=0, V=0, H=", (& — ¥ — p?)
This is the solution found in [4] and noted above, which has the form
”r:T%va uo =0, z:2(11+z2) (“2*1jt2> (2.8)

O<Lr<<a VT2, i 20)

Thus, the simplest invariant solutions which we have been able to find are described by the one-
dimensional equations (1.11) of shallow water with cylindrical waves.

Knowledge of the basic group (1.12) makes it possible to find the invariant solutions of rank 1 of the
system (1.11). For example, the operator aX,— (o —1) X X; corresponds to the self-similar solution

u=rt, z=r%72H, A=rf"
and the solution (2.8) corresponds to the operator X;+X, from the group (1.12).

B. Simple Waves, Such waves are partly invariant solutions of rank 1 [5]. In this case

u=u(), z=2@%), E=E@" 2 9 (2.9
We denote
dg 9% 3 3
@ = T

- ST
dzl T 27947

a) Let

dt/dt =0 (2.10)
Equation (2,10) means that the level surfaces of the simple wave will be contact characteristics.
From (0.1) with account for (2.9), (2.10), we obtain

z=const, uw y§ =20
This is the case of a degenerate simple wave,

b) Let us examine the nondegenerate simple wave

dg /de==0
It is easy to show that the nondegenerate simple wave is an irrotational motion, In fact, multiplying
the second equation (0.1) with account for (2.9) vectorially by u°, we obtain

uxPE=0

2.11)
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Exclusion of u” from (0.1) leads to the relation
d
(Z)=cvep (@@= (2.12)
This equation shows that the level surfaces £ =const of the nondegenerate simple wave will be sonic
characteristics (term borrowed from gasdynamics). Exclusion of u*V£ leads to the relation
z (0 )2 = (z) (2.13)

It also follows from (2,11) that the normal to the surface £ =const has the same direction for all of
its points. Therefore, each level surface of the simple wave is a plane in E3(x1, %2, t) space.

Hence we have
u' Uy’ — (g + ) =PE) (g= |ul) (2.14)

Here P(£) is an arbitrary function, The complete description of nondegenerate simple waves is given
by (2.13) and (2.14). Thus, the simple waves of (0.1) have been studied completely.

C. Double Waves. These are partly invariant solutions of rank 2, The double wave concept wasfirst
inftroduced in [6], and its group nature was described in [7]. In this case

U = u(‘g, T])v z = Z(gv 7]), E: E(‘Z1$ $2, t)v n=n (:El, .21'2, t) (2.15)

The functions £ and 7 are called the parameters of the double wave. They can be selected in sev-
eral ways., We shall consider the unknowns u; and u, to be independent and take them as the parameters
¢ and 7. Then we obtain from (0.1), under the condition that the flow be potential, the equation (1.2), ad-
mitting the group (1.3).

For convenience in writing the invariant solutions, we convert in (1,2) to polar coordinates
g="Vu?F u?, 0==arctg U,/ u)
Then (1.2) takes the form A

(2 — q7%20")2q0 + 297724 20 240 + 72z — 200200 — ¢ '25° — 297%2, z0®
: — 2 — gt + gtz + 22 =0, (2.16)

and the admissible operators (1.3) will be

9 sin® 9 - . 9 cos® 9
X1= Cose'a—q"—‘—T—“a—e—, X2=Slnew+7'a—e"
/] a a
Xo=—g5. Xi=ag +25; (2.17)

Using the optimal subgroups (1.4), it is easy to write out the corresponding essentially different in-
variant solutions,

a) We can construct an invariant solution corresponding to the operator Xy=—29()/06. It has the
form z=z(q). In this case we obtain in place of (2.16) the second-order ordinary differential equation

gz’ — 2% — gt - 2q2=10 (2.18)
Equation (2.18) admits reduction of the order. The substitutions

2(q) = ¢*n (E), £ = Ing, p(m) = 1'(§)

lead to the equation
pp’ —p* — (1 —6n)p® + 3(1 —n — 4nP)p — 8’21 + 41 =10

b) To the operator

a a
Xa’—‘QW‘f'zzgz—

corresponds an invariant solution of the form
z = ¢*H(6) (2.19)
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Substituting (2.19) into (2.16), we obtain the ordinary differential equation
HA—~4H)H'" + 2H — 1)H® — 8H® + 2H =0

which has the solution

YT—ZHdH
VH(CH—16H* —4)

o=x{

¢) For the operator

a a a
Xs+°LX4=¢Q'5q“_—‘W—|—2az3;

we have
z2=¢@H}), k=g

d) For the operator Xy= a8()/ ouy we have an invariant solution of the form z =z(u2). Substituting into
{1.2), we obtain the equationzz'' —z'2+2z=0, which has the solution

dz
ha= iS]/z(C——Zlnz)

We have a similar solution for the operator X,=08(")/8u,.

Examples of double waves are one-dimensional flows with plane waves and two-dimensional steady-
state flows. The complete classification of double waves has not yet been obtained.

D. Conical Flows. One class of particular solutions of (0.1) will be the conical flows — a particular
case of double waves. The system (0.1) admits [see (1.1)] the dilatation operator

Fi ] g @
Xe=tg +o g+ 257

The invariant solutions of rank 2 relative to this operator are termed conical flows. The invariants
of this operator will be the quantities x =t~!x!, y =t™x?; therefore, the conical flows have the form (1.5).
Conical flows occur whenever the flow region is bounded by straight lines converging to a single point,
which thereafter displace with constant velocity, causing the walls to remain wetted. As examples we note
the following cases.

a) The angular piston problem, in which at the moment t=0 the entire wall begins to move awayfrom
the liquid with constant velocity,

b) A discontinuous wave approaches the apex of a wedge at the moment t =0,

Conical flows are described by (1.6), The system (1,6) will be remarkable in the sense that these
are the equations (1.8) of two-dimensional steady motion with certain forces and sources. But the system
(1.6) is more complex than the system (1.8), and even (1.8) has received very little study [9]. Finding the
invariant solutions of (1.6) will reduce to integrating a system of ordinary differential equations. We note
the invariant solutions of rank one of the system (1.6), whose basic group operators are given by (1.7), and
the optimal system of single-parameter subgroups is given by (1.4).

a) For the operator X;=08(-)/8x we have the invariant solution of the form u=U(y), v=V(y), h=H(y),
which will be one-dimensional,

After determining V(y) from the equation
(V' + 1) V2 4+ 8V + &) = C,

U(y) and H(y) are found from the formulas

dy VRV 1
vw=e(-{ ), B ="

A similar solution holds for X,=5(-)/9y.

903



b) For the operator X,, which in polar coordinates has the form
a E) 8 P
r~ar——{—u~é;—}— U%?+2hﬁ’

we have
u=rU@®), »=rvV(®), h=r*H®)
¢) For the operator X; in polar coordinates
8 ] 2
B TR T
we have
u=Vsin(U—90), v=Vecos{(U—06), h=H, A=r
d) For the operator X;+aX, in polar coordinates

7} 0 a i}
ﬂ.av_;.(ocu_{_ y)m-—l—(ocv—u)Tv- —|—2Lxh—é71~

>
‘JIQ’

ar

we have
u=rVsin (U—0), v=rVcos (U—0), h=r2H, h=re®
E. Steady-State Flow. In the case of steady flow the basic equations will be (1.8) ,whose group op-

erators are given by (1.9}, and the optimal system of one-parameter subgroups is given by the operators
(1.10).

We note the invariant solutions,

a) For the operator
x X. 2 ) ) 8
1"‘}"{3 5""61‘1 +Bu1_a_E+BU2‘a—u'2—+2BZE

we have
uy= U (2%), uy=FV(1?), z=c"H(z?)
b) For the operator X,+8X; we have
Uy = ®V sin (U—0), ug=eVeos(U—8), z=¢"H, A =r
c) For the operator Xy+aX,+AX; in polar coordinates

a
Fa — ol (B - ltg) g+ (Butg — oty) o+ 275

we have
uy =rVsin(U ~—0), u,=r’Veos(U —0), z=r*H, I=r"
d) For the operator X; we have
' up = UQA), uy="VQ), z=HQ), h=zl/z?
We obtain the constant solution u;=A, uy,=B, z=C.
As an example, we consider the invariant solution corresponding to X, from (1.9). Tt has the form
u, = U(r), we=V(r), z=H(r (2.20)

We shall examine water flow over a bottom specified in the form z,=z,(r) without account for fric-
tion (F=0). Substituting (2.20) into (0.1) and (0.2), written in polar coordinates, we find one of the solutions

U=0, V== V(), H=[ridr— 2,
where V(r) is an arbitrary function.
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Hence we see that the free surface elevation H+z, in this circular motion is independent of z, i.e.,

the motion is completely defined by specification of V(r) and z, affects only the depth,

We can consider the partly invariant solutions of the equations of steady-state flow — simple waves,

which have been studied in detail in [5]. The description of all the nondegenerate simple waves for steady-
state flow follows from Eqgs. (2.13) and (2.14) for unsteady flow. The properties of the characteristics and
simple waves for steady supercritical liquid flows are the same as in the case of one-dimensional unsteady
flows with plane waves,

The author wishes to thank L, V. Ovsyannikov and N, Kh. Ibragimov for valuable guidance in carry-

ing out this study.
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